Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

نویسندگان

  • Ester L. Pastor
  • Elaine Reguera-Nuñez
  • Eugenia Matveeva
  • Marcos Garcia-Fuentes
  • Jose Palomo
چکیده

Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs) synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm) reached 100% release in 24-48 h, whereas prototypes with small mesopores (<6 nm) still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus

Cefazolin is an antibiotic frequently used in preoperative prophylaxis of orthopedic surgery and to fight secondary infections post-operatively. Although its systemic delivery in a bulk or bolus dose is usually effective, the local and controlled release can increase its effectiveness by lowering dosages, minimizing total drug exposure, abating the development of antibiotic resistance and avoid...

متن کامل

Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles.

Mesoporous silicon is a biocompatible, biodegradable material that is receiving increased attention for pharmaceutical applications due to its extensive specific surface. This feature enables to load a variety of drugs in mesoporous silicon devices by simple adsorption-based procedures. In this work, we have addressed the fabrication and characterization of two new mesoporous silicon devices pr...

متن کامل

Mesoporous calcium–silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2

Mesoporous calcium-silicon xerogels with a pore size of 15 nm (MCS-15) and pore volume of 1.43 cm(3)/g were synthesized by using 1,3,5-mesitylene (TMB) as the pore-expanding agent. The MCS-15 exhibited good degradability with the weight loss of 50 wt% after soaking in Tris-HCl solution for 56 days, which was higher than the 30 wt% loss shown by mesoporous calcium-silicon xerogels with a pore si...

متن کامل

Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery.

A major challenge for a drug-delivery system is to engineer stable drug carriers with excellent biocompatibility, monodisperse size, and controllable release profiles. In this study, we used a microfluidic technique to encapsulate thermally hydrocarbonized porous silicon (THCPSi) microparticles within solid lipid microparticles (SLMs) to overcome the drawbacks accompanied by THCPSi microparticl...

متن کامل

Fabrication of Clotrimazole microparticles using polyethylene glycol 6000 and beeswax

Backgrounds: Microparticles are one of drug delivery systems designed for sustained and controlled release of drugs for a long period of time. Clotrimazole is a broad-spectrum antifungal agent, which is generally used for treatment of Candida albicans and others fungal infections. Objectives: The present study aims to fabricate Clotrimazole microparticles using beeswax (lipophilic coating) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015